O. Guasch and R. Codina, An algebraic subgrid scale finite element method for the convected Helmholtz equation in two dimensions with applications in aeroacoustics. Computer Methods in Applied Mechanics and Engineering, 196 (45-48), pp. 4672-4689, (2007).

An algebraic subgrid scale finite element method formally equivalent to the Galerkin Least-Squares method is presented to improve the accuracy of the Galerkin finite element solution to the two-dimensional convected Helmholtz equation. A stabilizing term has been added to the discrete weak formulation containing a stabilization parameter whose value turns to be the key for the good performance of the method An appropriate value for this parameter has been obtaianed by means of a dispersion analysis, As an apllication, we have considered the case of aerodynamic sound radieted by incompressible flow past a two-dimensional cylinder. Following Lighthill's acoustic analogy, we have use the time Fourier transform of the double divergence fo the Reynolds stress tensor as a source term for the Helmholtz and convected Helmholtz equations and showed the benefits of using the subgrid scale stabilitzation. 

ICR es una ingeniería acústica que soluciona problemas de ruido y vibraciones. Trabaja para sectores como el de la construcción, ferrocarril, industrial, automóvil y medioambiente. Investiga (I+D) nuevos métodos para la resolución de problemas vibroacústicos. También diseña software para control de calidad y cálculo de aislamientos e imparte formación en acústica a empresas privadas y colegios oficiales. 
Ingeniería para el Control del Ruido – Barcelona.

© creactivitat.com